首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46595篇
  免费   4108篇
  国内免费   3571篇
化学   31748篇
晶体学   667篇
力学   1715篇
综合类   668篇
数学   6764篇
物理学   12712篇
  2023年   543篇
  2022年   837篇
  2021年   1785篇
  2020年   1713篇
  2019年   1545篇
  2018年   1229篇
  2017年   1248篇
  2016年   1680篇
  2015年   1688篇
  2014年   2045篇
  2013年   3432篇
  2012年   2307篇
  2011年   2652篇
  2010年   2368篇
  2009年   2891篇
  2008年   3044篇
  2007年   3173篇
  2006年   2482篇
  2005年   1767篇
  2004年   1592篇
  2003年   1513篇
  2002年   1280篇
  2001年   1178篇
  2000年   906篇
  1999年   649篇
  1998年   632篇
  1997年   444篇
  1996年   521篇
  1995年   438篇
  1994年   470篇
  1993年   496篇
  1992年   495篇
  1991年   318篇
  1990年   271篇
  1989年   225篇
  1988年   243篇
  1987年   209篇
  1986年   225篇
  1985年   325篇
  1984年   244篇
  1983年   155篇
  1982年   303篇
  1981年   472篇
  1980年   425篇
  1979年   470篇
  1978年   371篇
  1977年   280篇
  1976年   237篇
  1974年   74篇
  1973年   150篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
In this work, the application of near infrared (NIR)-emitting NaYbF4:1%Tm3+@NaLuF4:30%Nd3+ core–shell nanoparticles is reported for noninvasive probing and monitoring the temperature during photopolymerization of dental materials. When excited at 808 nm, the synthesized nanoparticles emit NIR photoluminescence (PL) with two distinctive peaks at 865 and 980 nm which correspond to radiative transitions from the doped Nd3+ and Yb3+ ions, respectively. Luminescence intensity ratio between these two bands is found to vary with temperature due to temperature-dependent electronic excitation energy transfer between Nd3+ and Yb3+ ions at the core/shell interface. This finding allows luminescence ratiometric evaluation of the in situ temperature during photopolymerization of resin cement (doped with nanoparticles) in a veneer placement procedure. In addition, the NIR emission also enables PL imaging of the distribution of the adhesive under the veneer. The results highlight that rare-earth ions–doped nanoparticles with both excitation and emission in the NIR spectral range are advantageous for both PL-based nanothermometry and imaging due to the reduced attenuation of NIR light by dental ceramics.  相似文献   
52.
ABSTRACT

Using density functional theory calculations, we investigate the gas sensing performance of B-, N-doped and BN-codoped C60 fullerenes towards NO and NO2 molecules. The calculated adsorption energies and net charge-transfer values indicate that NO and NO2 molecules have a stronger interaction with the BN-codoped fullerenes compared to the B- or N-doped ones. It is also found that the electronic properties of the BN-codoped C60 exhibit a larger sensitivity towards NO and NO2 molecules. An increase in the concentration of doped/co-doped B and N atoms tends to weaken the gas sensing ability of these systems.  相似文献   
53.
ABSTRACT

Multicolour emissive carbon dots (CDs) are widely investigated by virtue of their merits on fluorescent properties. Method on heteroatom doping assisted with various solvents has been proved efficient in achieving multiple-colour-emissive CDs, especially long-wavelength emission. Herein, a synthesis of multicolour-emissive CDs by controlled surface function is reported. By tuning the thermal-pyrolysis temperature and molar ratio of reactants, optimal emission of the resulted CDs gradually shifts from blue to yellow light with the assistance of different solvents. According to the emissive relationship dependent on excitation, fluorescence lifetimes, and FT-IR of these CDs, the different surface states participated with S and N elements on the surface of carbogenic core govern fluorescent colours of the CDs. In terms of the applications, blue CDs (B-CDs) exhibits high sensitivity for ion detections of Ag+ and Fe3+, which is further illustrated to have different quenching mechanisms each other because that these ions have the affinity interaction with different surface groups of the CDs. Moreover, blue and yellow CDs solutions are mixed with PVP water solution to fabricate white-light CDs/PVP film, which exhibits stable fluorescence with a CIE coordinate of (0.32, 0.33) and endows these CDs as potentially fluorescent nanomaterial in the solid state lighting field.  相似文献   
54.
以两种不同取代的2-氨基二苯甲酮为原料,氯苯为溶剂,BF3-Et2O为脱水剂,通过分子间脱水一步环化缩合制备非对称二苯并[b,f][1,5]二氮杂环辛四烯衍生物。运用HPLC监控反应过程,优化合成工艺,得到最佳反应条件为:等物质的量的两种不同取代2-氨基二苯甲酮和BF3-Et2O,在氯苯中回流反应12 h。化合物4a^4c为新化合物,其结构经1H NMR,13C NMR和MS(ESI)表征。  相似文献   
55.
Driven and non-equilibrium quantum states of matter have attracted growing interest in both theoretical and experimental studies in condensed matter physics. Recent progress in realizing transient collective states in driven or pumped Dirac materials (DMs) is reviewed herein. In particular, the focus is on optically pumped DMs which are a promising platform for transient excitonic instabilities. Optical pumping combined with the linear (Dirac) dispersion of the electronic spectrum offers a knob for tuning the effective interaction between the photoexcited electrons and holes, and thus provides a way of reducing the critical coupling for excitonic instability. As a result, a transient excitonic condensate could be achieved in a pumped DM while it is not feasible in equilibrium. A unifying theoretical framework is provided for describing transient collective states in 2D and 3D DMs. The experimental signatures are described and numerical estimates of the size of the dynamically induced excitonic gaps and the values of the critical temperatures for several specific systems, are summarized. In addition, general guidelines for identifying promising material candidates are discussed. Finally, comments are provided regarding recent experimental efforts in realizing transient excitonic condensate in pumped DMs, and outstanding issues and possible future directions are outlined.  相似文献   
56.
This article proposes a new fractional-order discrete-time chaotic system, without equilibria, included two quadratic nonlinearities terms. The dynamics of this system were experimentally investigated via bifurcation diagrams and largest Lyapunov exponent. Besides, some chaotic tests such as the 0–1 test and approximate entropy (ApEn) were included to detect the performance of our numerical results. Furthermore, a valid control method of stabilization is introduced to regulate the proposed system in such a way as to force all its states to adaptively tend toward the equilibrium point at zero. All theoretical findings in this work have been verified numerically using MATLAB software package.  相似文献   
57.
The structure formed by cobalt phthalocyanine (CoPc) and cobalt octaethylporphyrin (CoOEP) with electron-acceptor tetracyano-π-quinodimethane (TCNQ), was studied by Density Functional Theory (DFT) methods. According to theoretical calculations, both cobalt systems can establish dispersion forces related to TCNQ and also in both cases the link between them is built by means of hydrogen bonds. Based on the results of these DFT calculations, we developed experimental work: the organic semiconductors were doped, and the thermal evaporation technique was used to prepare semiconductor thin films of such compounds. The structure of the films was studied by FTIR and Raman spectroscopy. The optical properties of the CoPc-TCNQ and CoOEP-TCNQ films were investigated by means of UV-Vis measurements. The results obtained were used to estimate the type of transitions and the optical bandgap. The results were compared to the previously calculated theoretical bandgap. The CoOEP-TCNQ film presented the smallest theoretical and experimental bandgap. Finally, the electrical properties of the organic semiconductors were evaluated from a PET (polyethylene terephthalate)/indium tin oxide (ITO)/cobalt macrocycle-TCNQ/silver (Ag) device we prepared. The CoOEP-TCNQ-based device showed an ohmic behavior. The device manufactured from CoPc-TCNQ also showed an ohmic behavior at low voltages, but significantly changed to SCLC (space-charge limited conductivity) at high voltage values.  相似文献   
58.
The studies of electron transport through a junction of topological materials in the literature so far ignore the coupling of a topological material to its surrounding environment. Here, the dynamics of an open system through a stochastic Hamiltonian are simulated to investigate the influence of the environment on the scattering of electrons by a junction of different topological materials, such as a Dirac–Weyl magnetic junction and a topological insulator. It is found that, although the detrimental effect of the environment is inevitable, the Landauer conductance can be enhanced via adjusting the system–environment coupling strength. This result supplies the possibilty of changing the transport feature of topological materials by modulating the surrounded environment. It is also demonstrated that a non-Hermitian Hamiltonian can be used to replace the stochastic Hamiltonian for this study, when the system and the environment coupling are weak.  相似文献   
59.
Si nanoparticles (NPs), which are innovative promising light-harvesting components of thin-film solar cells and key-enabling biocompatible theranostic elements of infrared-laser and radiofrequency hyperthermia-based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid-infrared band-to-band and free-carrier absorption via donor sulfur-hyperdoping during high-throughput facile femtosecond-laser ablative production in liquid carbon disulfide. High-resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. A 200-nm thick layer of the nanoparticles exhibits near−mid-infrared absorbance, comparable to that of the initial 380-micron thick n-doped Si wafer (phosphor-dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid-IR structured, multi-band absorption of various sulfur-impurity clusters and smooth free-carrier absorption are break through advances in mid-infrared (mid-IR) laser and radiofrequency (RF) hyperthermia-based therapies, as envisioned in the RF-heating tests, and in fabrication of higher-efficiency thin-film and bulk photovoltaic devices with ultra-broad (UV−mid-IR) spectral response.  相似文献   
60.
Camouflage and wound healing are two vital functions for cephalopods to survive from dangerous ocean risks. Inspired by these dual functions, herein, we report a new type of healable mechanochromic (HMC) material. The bifunctional HMC material consists of two tightly bonded layers. One layer is composed of polyvinyl alcohol (PVA) and titanium dioxide (TiO2) for shielding. Another layer contains supramolecular hydrogen bonding polymers and fluorochromes for healing. The as-synthesized HMC material exhibits a tunable and reversible mechanochromic function due to the strain-induced surface structure of composite film. The mechanochromic function can be further restored after damage because of the incorporated healable polyurethane. The healing efficiency of the damaged HMC materials can even reach 98 % at 60 °C for 6 h. The bioinspired HMC material is expected to have potential applications in the information encryption and flexible displays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号